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Introduction ©
esg

e Early assumptions:
— Rock is a homogeneous mass with no pre-existing structure
— Hydraulic stimulation nucleates fractures which propagate through the rock
— Fractures grow asymmetrically about the treatment zone
— Fractures are vertical to sub-vertical

* |Introduction of microseismic monitoring in ~2000 challenged a number of
these assumptions

— Fractures do not always grow symmetrically

— Changes in treatment programs and completion styles can affect fracture
growth

— Not all fractures are vertical

— Pre-existing structures such as natural fractures exist in many geological
formations.
 We review the evolution of microseismic monitoring as it has been applied
to hydraulic fracturing and how it has helped shape the current
understanding of reservoirs and fracing.




Early Days of Monitoring

* Single, vertical, offset observation arrays

 Microseismics can identify stage dimensions only -
Length, Height, Orientation

— Draw a box/envelope around events to determine
stimulated volume

 More events = more production

 Real-time geo-hazard avoidance
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Role of Structure in Production

Complex Fracture Network
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Real Time Geo-Hazard Avoidance
esg

* Prevention of fracing into

aquifers B Yo
 Identification of casing * -

failures =
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How to calculate

fracture dimensions?
- 100% of events?

90%

- Envelop around

events?

- Does every event
contribute equally?

Fracture Dimensions and Detection Biases ©

P-60-18W5

Moment Magnitude

600 700 800 900

Distance (m)

\ Detection Limit

) |

1100 1200 1300 8




Stimulated Reservoir Volume
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Estimated Stimulated Reservoir Volume based on
seismic deformation (SRV) aims to describe effective
stimulation volume taking into account information
available in the microseismic data.

— Seismic Deformation in a volume is calculated based
on the moment of the seismic events within that
volume.

— Volumes that have small seismic deformation will
not be extensively fractured.

— Areas of higher seismic deformation show increased
fracture density and permeability and therefore, are
expected to contribute more effectively to reservoir
production.

— Large seismic deformation will either have a complex
network of many small fractures, a number of large

fractures, or both.




Using Source Parameters to Assess Treatmeng,

Plan

Stage A— |
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Stage B

Number of Events: 2416 1700
Fracture Length (m): 371 326
Type of Sand Used: 70/140, 40/70 | 70/140, 40/70, 40/80
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More Than Just Dots...

S wave window
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* Seismic Moment, M,
e Moment Magnitude,
My

e Stress Drop, Ac

e Fault Radius, r
e Stress Drop, Ac

* Radiated Energy, E

* Apparent Stress, G,

Apparent Stress, o, is a measure of how much energy the events are radiating
relative to their moment:

 Higher apparent stress, events radiate energy more readily, can characterize unstable

growth of events in more brittle regions of the reservoir

 Lower apparent stress, events invest more energy into deformation than radiation, stable
growth of events
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Apparent Stress and Fracture Intensit

Apparent Stress
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HEN A h

Events cluster along
bedding plane, high
apparent stresss
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) Fracture intensity is the cumulative fracture
length per unit area in each formation.

Fracture Intensity




Using More Than One Array

Vertical Array

Adding multiple arrays
reduces detection bias
Provides wider coverage of
treatment wells

Improves location accuracy
Provides opportunity for
more advanced analysis

Surface Arrays

Microseismic
Events

Multiple Vertical or 13
Horizontal arravs o



Benefit of Multiple Observation Arrays e

Plan View
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e All 52 events are
 Individually locatable on
all arrays (P- and S-
waves detected on all
arrays)
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rray Locations
Asymmetry

.
A

Error Ellipsoids

Array 1

Single-Array @

Event Locations ©

Reveal increase scatter
Larger error ellipsoids

Loss of northeast-
southwest azimuth in array
2 event solutions

One array solutions rely
more on azimuth
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Challenges to Old Ideas

* How do fractures initiate and propagate?

* Are new fractures being created or are old fractures being activated?

 What is the role of pre-existing fractures and bedding planes?

* Are these fractures open or cemented prior to stimulation?

* Are some fracture sets preferentially activated during hydraulic stimulation?

* What is the interaction of fractures of different orientations?




Moment Tensors
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Bridging the Gap Using Microseismicity ()

S wave window esg
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SMTI/DFN

 Modes of failure have three end-members: esg
— isotropic
— double-couple (DC) / shear
— compensated linear vector dipole (CLVD)

e Common modes of failure:
— Tensile opening of a fracture (normal to tension axis)

— Closure of a fracture (normal to pressure axis) explosion k = 1.0

— Slip on a fracture surface (DC) — resolvable solutions

— Relative dimensions based on modified Brune Model

(shear-tensional) i et
+dipole#’~ /' \

crack opening crack closing DC /shear




Response to Treatment

Slurry Rate (m~3/min)
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Response to Treatment
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Bui|aing on SMTI o

Discrete Fracture Network (DFN) esg
Microseismic Events Moment Tensors Discrete Fracture
(dots) % (beachballs) 9 Networks

(penny-shaped cracks)

Fault Planes: Crack Opening
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Fracture orientations and extents are dimensions shown as discs, coloured by
source type.




DFN: Marcellus - Role of Pre-existing

Fractures in Shale esg
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Stress concentration from faults results in different

fracture sets activated on either side of the pad. 24




DFN Activation in the Marcellus Shale

Well B
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DFN Case Study #2
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Stimulation Response: Fractures
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Enhanced Fluid Flow - EFF e
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Single Fracture Fracture System

* Opening aperture is calculated based on
the strain from the moment tensor
factoring in the source dimensions.

* Average individual fracture openings
over a neighbourhood (nearest
neighbour statistical approach) of
fractures with similar orientation
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Where Do We Go Next?

* Are we seeing the whole picture?

e Seismic vs. aseismic and the age old balance of
energy question?

* Where did the proppant go?

e Relationship between rock properties (Poisson’s
ratio, Young’s Modulus, Vp/Vs ratios, etc.) and
fracability and production?

e Can we go into deeper and hotter wells?

31




New Tools, New Understandings e
esg

e Operators are in need of more robust monitoring solutions

— High temperature tools
e Deeper, higher temperature reservoirs are the “hot” plays

— Longer lasting tools

e Stimulations are moving away from single well pads to multi-well, zipper-
fracing pads

e Integration is key

— Geomechanics, geophysics, geology, engineering, all need to
come together to answer the questions

e Broader range of monitoring equipment

— Treatments are producing events with moment magnitudes > 0

— Traditional downhole geophones underestimate the actual size
of larger events. -




Hybrid Solutions: @
Combining Surface + Downhole + lower Freq. Geophone$¥S§
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Putting It All Together




